

Letters

Comments on "The Measurement of Noise in Microwave Transmitters"

R. KNÖCHEL, K. SCHÜNEMANN, AND BURKHARD SCHIEK

In the recent paper, "The Measurement of Noise in Microwave Transmitters," J. R. Ashley *et al.* [1] give a review of several methods for the measurement of AM and FM noise, respectively. The section, which deals with FM noise measurements at frequencies below 5 GHz, may be the source of erroneous conclusions, as will be pointed out in this comment. In the cited paper, the authors recommend the utilization of transmission-line discriminators. These discriminators, already discussed by the same authors somewhat earlier [2], are said to have an optimum line length for maximum discriminator sensitivity where the signal is damped by 1 Np during one round trip through the discriminating line [1, (42)]. This is true, if a delay line is used as a discriminator. In the papers subject of this comment [1], [2], however, Ashley *et al.* give rise for the opinion that the optimum line length also exists for a discriminator, which utilizes a transmission-line resonator. Although the delay-line discriminator has been discussed by Cheung [3] and the discriminator implemented with a resonator is a standard laboratory equipment, we shall derive special features of the various discriminators for the sake of clarity in the following. Fig. 1 describes both the delay-line discriminator (with the slide screw tuner removed) and the transmission line (TEM) resonator-discriminator (where the slide screw tuner is used for input matching). First, we calculate the input impedance Z at the input port of the transmission line to be

$$Z = Z_0 \frac{\sinh \left(\alpha n \frac{U_0}{v_c} \right)}{\cosh \left(\alpha n \frac{U_0}{v_c} \right) + \cos \left(2\pi n \frac{\Delta\nu}{v_c} \right)} \left\{ 1 + j \frac{\sin \left(2\pi n \frac{\Delta\nu}{v_c} \right)}{\sinh \left(\alpha n \frac{U_0}{v_c} \right)} \right\} \quad (1)$$

where

Z_0	characteristic impedance of transmission line components,
α	transmission line attenuation factor,
n	odd number,
U_0	phase velocity on the transmission line,
v_c	carrier frequency,
$\Delta\nu$	small deviation from the carrier frequency,
$l = (n/2)(U_0/v_c)$	length of the transmission line (odd multiple of half-wavelengths at the carrier frequency).

Manuscript received December 5, 1977.

R. Knöchel and K. Schünemann are with the Institut für Hochfrequenztechnik, T. U. Braunschweig, Germany.

B. Schiek is with Philips GmbH, Forschungslaboratorium Hamburg, 2000 Hamburg 54, Germany.

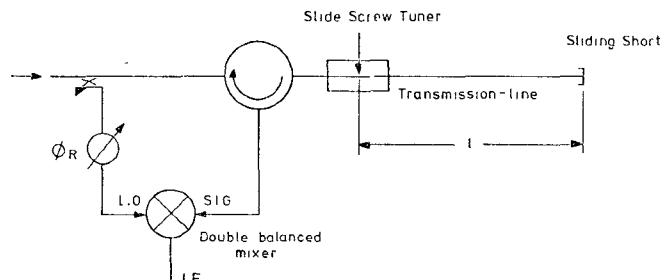


Fig. 1. Discriminator circuits.

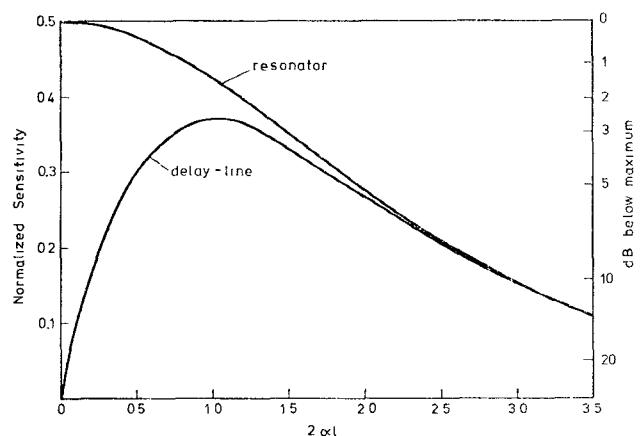


Fig. 2. Discriminator sensitivity versus length of the transmission line l for constant α .

Using (1) we derive the reflection coefficient at the input port of the transmission line for the delay line discriminator as

$$r_d = -e^{-\alpha n(U_0/v_c)} e^{-j2\pi n(\Delta\nu/v_c)}. \quad (2)$$

When using the TEM line of length $l = n(\lambda/2)$ (λ is the wavelength) as a resonator, matching is established between the resonator and the adjacent (lossless) transmission line of characteristic impedance Z_0 by means of a slide screw tuner. Hence we obtain from (1) the input reflection coefficient of the resonator

$$r_r = \frac{1}{2} \frac{\sin \left(2\pi n \frac{\Delta\nu}{v_c} \right)}{\sinh \left(\alpha n \frac{U_0}{v_c} \right)} e^{j(\pi/2)} \quad (3)$$

where $\cos(2\pi n(\Delta\nu/v_c)) \approx 1$ is assumed.

From (2) and (3) we calculate the output amplitude of the double balanced mixer. The output voltage is optimized by a proper choice of the reference phase ϕ_R at the LO input of the mixer. Equation (2) yields for the delay line discriminator

$$v_d = A e^{-\alpha n(U_0/v_c)} \sin \left(2\pi n \frac{\Delta\nu}{v_c} \right) \quad (4)$$

and (3) for the discriminator with a resonator

$$v_r = \frac{A}{2} \frac{\sin \left(2\pi n \frac{\Delta\nu}{v_c} \right)}{\sinh \left(\alpha n \frac{U_0}{v_c} \right)} \quad (5)$$

respectively, where

- v_d output voltage of the delay-line discriminator,
- v_r output voltage of the resonator discriminator,
- A incident amplitude at the circular input.

Finally, we obtain the sensitivity for the delay-line discriminator

$$S_d = \frac{dv_d}{d(\Delta\nu)} = Ae^{-\alpha n(U_0/v_c)} \cos \left(2\pi n \frac{\Delta\nu}{v_c} \right) \frac{2\pi n}{v_c} \quad (6)$$

and for the discriminator with a resonator

$$S_r = \frac{dv_r}{d(\Delta\nu)} = \frac{A}{2} \frac{\cos \left(2\pi n \frac{\Delta\nu}{v_c} \right)}{\sinh \left(\alpha n \frac{U_0}{v_c} \right)} \frac{2\pi n}{v_c}. \quad (7)$$

Both sensitivities are maximum at $\Delta\nu=0$, and we can write in a normalized form

$$s_d = \frac{S_d}{\frac{1}{\alpha} \frac{2\pi}{U_0} A} = e^{-2\alpha 1} 2\alpha 1 \quad (8)$$

and

$$s_r = \frac{S_r}{\frac{1}{\alpha} \frac{2\pi}{U_0} A} = \frac{1}{2} \frac{2\alpha 1}{\sinh(2\alpha 1)}. \quad (9)$$

It should be stressed that neither the sensitivity s_d nor s_r depend on frequency v_c , as may be deduced from [1] (especially (39) and some remarks at p. 308). The sensitivities from (8) and (9) are plotted in Fig. 2 versus the line length. It is seen, that the sensitivity for a discriminator with a resonator is always better than the sensitivity of a delay line. The best choice in line length for the first one is $l=(\lambda/2)$ ($n=1$), if losses at the ends of the transmission-line resonator are neglected. The maximum sensitivities are in the ratio

$$\frac{s_r}{s_d} = \frac{e}{2} \quad (10)$$

that means the delay line discriminator is about 2.6 dB worse in sensitivity.

REFERENCES

- [1] J. R. Ashley, T. A. Barley, and G. J. Rast, "The measurement of noise in microwave transmitters," *IEEE Trans., Microwave Theory Tech.*, vol. MTT 25, pp. 294-318, Apr. 1977.
- [2] —, "Transmission line discriminators for FM-noise measurements," in *Proc. IEEE (Letters)*, vol. 64, pp. 578-580, Apr. 1977.
- [3] W. N. Cheung, "The measurement of FM-noise from Gunn oscillators using a microwave interferometer," *Int. J. Electronics*, vol. 3, pp. 809-815, 1974.